Search results for "Electrochemical Fabrication"

showing 8 items of 8 documents

Electrochemical Fabrication of High K Niobium-Tantalum Mixed Oxides/Poly 3-4 Ethylene Dioxythiophene Junctions.

2012

Electrochemical Fabrication High K Niobium-Tantalum Mixed Oxides Poly 3-4 Ethylene DioxythiopheneSettore ING-IND/23 - Chimica Fisica Applicata
researchProduct

Electrochemical fabrication of high k Al-Ta mixed oxides

2014

Electrochemical fabrication high k Al-Ta mixed oxides Photoelectrochemistry Electrochemical Impedance Spectroscopy Tuning of solid state propertiesSettore ING-IND/23 - Chimica Fisica Applicata
researchProduct

ELECTROCHEMICAL FABRICATION OF METAL/OXIDE/CONDUCTING POLYMER JUNCTIONS FOR ELECTRONIC DEVICES

2014

Electrochemical fabrication metal/oxide/conducting polymer junctions electronic devicesSettore ING-IND/23 - Chimica Fisica ApplicataSOLID STATE ELECTROLYTIC CAPACITORS FIELD EFFECT TRANSISTORS ANODIC OXIDES CONDUCTING POLYMERS PHOTOELECTROCHEMISTRY ELECTROCHEMICAL IMPEDANCE SPECTROSCOPY PEDOT NIOBIUM OXIDE TITANIUM OXIDE TANTALUM OXIDE
researchProduct

Electrochemical Fabrication and Physicochemical Characterization of Metal/High-k Insulating Oxide/Polymer/Electrolyte Junctions

2014

Photoelectrochemical polymerization of poly(3,4-ethylenedioxythiophene), PEDOT, was successfully realized on anodic film grown to 50 V on magnetron sputtered Ti-6 atom % Si alloys. Scanning electron microscopy allowed us to evidence formation of compact and uniform polymer layers on the oxide surface. Photoelectrochemical and impedance measurements showed that photopolymerization allows one to grow PEDOT in its conducting state, while a strong cathodic polarization is necessary to bring the polymer in its p-type semiconducting state. Information on the optical and electrical properties of metal/oxide/polymer/electrolyte junctions proves that PEDOT has promising performance as an electrolyte…

Materials scienceFabricationElectrochemical fabricationInorganic chemistryImpedance measurementOxidePhysico-chemical characterizationPoly-3 4-ethylenedioxythiopheneElectrolyteElectrochemistrySettore ING-INF/01 - ElettronicaPhotoelectrochemistrychemistry.chemical_compoundPEDOT:PSSPhysical and Theoretical ChemistryConducting statechemistry.chemical_classificationPhotopolymerizationCathodic polarizationPolymerSilicon alloySurfaces Coatings and FilmsElectronic Optical and Magnetic MaterialsOptical and electrical propertieSettore ING-IND/23 - Chimica Fisica ApplicataGeneral EnergychemistryPolymerizationCavity magnetronLithium IntercalationTitanium alloyScanning electron microscopyThe Journal of Physical Chemistry C
researchProduct

Photoelectrochemical Evidence of Cu2O/TiO2 Nanotubes Hetero-Junctions formation and their Physicochemical Characterization

2014

Cu2O/TiO2 nanotubes heterojunctions were fabricated by electrochemical deposition of cuprous oxide on TiO2 nanotubes arrays grown by anodizing. X-ray diffraction and Raman Spectroscopy analysis allows for identification of Cu2O, whose morphological features were studied by Scanning Electron Microscopy as a function of the charge circulated during the electrodeposition step. Photoelectrochemical measurements in aqueous solutions evidenced a red shift of the light absorption threshold of TiO2 nanotubes due to the presence of cuprous oxide even for very low circulated charges, while electrochemical impedance measurements proved a significant reduction of the electrode impedance due the presenc…

PhotocurrentMaterials scienceAqueous solutionCu2O/TiO2 nanotubes heterojunctions electrochemical fabrication XRD Raman Spectroscopy Photoelectrochemical measurements Electrochemical Impedance SpectroscopyAnodizingScanning electron microscopeGeneral Chemical EngineeringAnalytical chemistryOxideHeterojunctionElectrochemistrychemistry.chemical_compoundsymbols.namesakeSettore ING-IND/23 - Chimica Fisica ApplicataChemical engineeringchemistryElectrochemistrysymbolsRaman spectroscopyElectrochimica Acta
researchProduct

Electrochemical Fabrication of Inorganic/Organic Field Effect Transistor

2010

After discovery of conducting polymers and the possibility to modify their electrical properties (from insulating to metallic-like behaviour) by doping and a careful choice of the processing conditions, a large amount of research effort has been devoted to the theoretical understanding of their solid state properties as well as to exploit the possible application of conducting polymers in many technological fields including: large area organic electronics, polymer photovoltaic cell and sensors (1-2). Organic thin-film transistors appears very promising for the development of low cost, flexible and disposable plastic electronics. In order to reduce the operating voltage it has been suggested…

Settore ING-IND/23 - Chimica Fisica ApplicataElectrochemical Fabrication Inorganic/Organic strcture Field Effect TransistorSettore ING-INF/01 - Elettronica
researchProduct

Electrochemical fabrication of Cu2O/TiO2 nanotubes junctions with visible light photoactivity

2013

Settore ING-IND/23 - Chimica Fisica ApplicataElectrochemical fabrication Cu2O/TiO2 nanotubes junctions visible light photoactivity Photocurrent Spectroscopy Electrochemical Impedance Spectroscopy
researchProduct

Electrochemical fabrication of amorphous TiO2/Poly-3,4 Ethylenedioxythiophene (PEDOT) hybrid structures for electronic devices.

2013

Settore ING-IND/23 - Chimica Fisica ApplicataElectrochemical fabrication amorphous TiO2/Poly-34 Ethylenedioxythiophene (PEDOT) hybrid structures electronic devices
researchProduct